Analysis 2
 16 April 2024

$$
\begin{gathered}
\text { Warm-up: Calculate } f_{y}^{\prime}(x, y) \text { for } \\
f(x, y)=x y^{2}-x^{10}+y+e^{\sin x}+3 .
\end{gathered}
$$

Schedule

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
15 April	(today)	17 April Problem Session	18 April	19 April		
22 April First Night of Passover	Exam 1	24 April Lecture	25 April	26 April		
29 April	30 April $1 / 2$ Lecture, $1 / 2$ PS					

Example 1: $\int_{1}^{3} \int_{2}^{5} y x^{2} \mathrm{~d} x \mathrm{~d} y=\int_{1}^{3}(39 y) \mathrm{d} y=156$.
Example 2: $\int_{1}^{3} \int_{2}^{5} y x^{2} \mathrm{~d} y \mathrm{~d} x=\int_{1}^{3}\left(\frac{21}{2} x^{2}\right) \mathrm{d} x=91$.
Example 3: $\int_{2}^{5} \int_{1}^{3} y x^{2} \mathrm{~d} y \mathrm{~d} x=\int_{2}^{5}\left(4 x^{2}\right) \mathrm{d} x=156$.
The "iterated integrals"

$$
\int_{1}^{3} \int_{2}^{5} y x^{2} \mathrm{~d} x \mathrm{~d} y \text { and } \int_{2}^{5} \int_{1}^{3} y x^{2} \mathrm{~d} y \mathrm{~d} x
$$

have the same value because they are both $\iint_{R} y x^{2} \mathrm{~d} A$ for the same rectangle R.

Regions

The way we write an iterated integral for $\iint_{D} f \mathrm{~d} A$ depends on the shape of
the region D.

- Rectangle: $\int_{\text {left }}^{\text {right }} \int_{\text {bot. (number) }}^{\text {top (number) }} f \mathrm{~d} y \mathrm{~d} x$ or $\int_{\text {bot. }}^{\text {top }} \int_{\text {left }}^{\text {right }} f \mathrm{~d} x \mathrm{~d} y$
- L/R sides are walls (or points): $\int_{\text {left }}^{\text {right }} \int_{\text {bottom fin. }}^{\text {top function }} f \mathrm{~d} y \mathrm{~d} x$

- Top and bottom are flat (or points): $\int_{\text {bot. }}^{\text {top }} \int_{\text {left fin. }}^{\text {right tn. }} f \mathrm{~d} x \mathrm{~d} y$

Anti-derivalives

In Analysis 1, both definite integrals $\int_{0}^{1} x^{2} \mathrm{~d} x$ and indefinite integrals $\int x^{2} \mathrm{~d} x$
are very common.

- $F(b)-F(a)$ can be a meaningful physical quantity.
- $F(x)+C$ isn't actually that useful but itself, but doing indefinite integrals is good practice for definite integrals.

It's uncommon to see $\int f(x, y) \mathrm{d} x$ or $\int f(x, y) \mathrm{d} y$ as an indefinite integral task.
This is because it doesn't answer a useful task by itself.

Anti-derivatives

Does the answer to this task have a helpful science/engineering application?
∇ Calculate $\int_{0}^{\pi} \int_{\sin x}^{x}(2 x y+1) \mathrm{d} y \mathrm{~d} x$.
∇ Calculate $\int_{\sin x}^{x}(2 x y+1) d y$.
\bar{x} Calculate $\int(2 x y+1) \mathrm{d} y$.

(color is density)

Anti-derivatives

Does the answer to this task have a helpful science/engineering application?
∇ Calculate $\int_{0}^{\pi} \int_{\sin x}^{x}(2 x y+1) \mathrm{d} y \mathrm{~d} x$.
∇ Calculate $\int_{\sin x}^{x}(2 x y+1) d y$.
\times Calculate $\int(2 x y+1) \mathrm{d} y$.
$\bar{\chi}$ Describe all functions $f(x, y)$ for which $f_{y}^{\prime}=2 x y+1$.

These are the same task.
∇ Describe all functions $f(x, y)$ for which $\nabla f=\left[\begin{array}{c}y^{2}-3 x^{2} \\ 2 x y+1\end{array}\right]$.

∇ Describe all functions $f(x, y)$ for which $\nabla f=\left[\begin{array}{l}y^{2}-3 x^{2} \\ 2 x y+1\end{array}\right]$.

Task: Describe all functions $f(x, y)$ for which $\nabla f=\left[\begin{array}{l}y^{2}-3 x^{2} \\ 2 x y+1\end{array}\right]$. $f(x, y)$ will have the format

$$
\int(2 x y+1) d y=x y^{2}+y+g(x)
$$

for some yel-unknown $g(x)$, (not just $x y^{2}+y+c$).

Warm-up: Calculate $f_{y}^{\prime}(x, y)$ for

$$
\begin{gathered}
f(x, y)=x y^{2}-x^{10}+y+e^{\sin x}+3 . \\
f^{\prime} y=2 x y+1
\end{gathered}
$$

Task: Describe all functions $f(x, y)$ for which $\nabla f=\left[\begin{array}{l}y^{2}-3 x^{2} \\ 2 x y+1\end{array}\right]$. $f(x, y)$ will have the format

$$
\int(2 x y+1) d y=x y^{2}+y+g(x)
$$

for some yel-unknown $g(x)$.
From the formula above, $f^{\prime} x=y^{2}+0+g^{\prime}(x)$.
But from ∇f we also know $f^{\prime} x=y^{2}-3 x^{2}$.
So it must be that $g^{\prime}(x)=-3 x^{2}$. Thus $g(x)=-x^{3}+C$, and

$$
f(x, y)=x y^{2}+y-x^{3}+C
$$

A: Integrate $f(x, y)=x y \cos \left(x^{2}\right)$ over the 3×12 (width \times height) rectangle with $(0,1)$ as its lower-left corner.

Answer: $42 \sin (9)$

B: Integrate $f(x, y)=y$ over the region bounded by $x=0, x=1, y=x^{2}$, and $y=x^{2}+1$.

C: Integrate $f(x, y)=1$ over the region bounded by $y=x+5, y=\pi$, $y=-\pi$, and $x=\sin (y)$.

Answer: 10π

D: Integrate $f(x, y)=1$ over the region bounded by $y=5-x^{2}, y=(x+1)^{2}$.

Answer: 9

$E:$ Integrate $f(x, y)=5 x$ over the right half-disk of radius 1 centered at the

 origin.F1: Integrate $f(x, y)=x^{3} y^{2}$ over the region bounded by the x-axis, the line $x=1$, and the curve $y=x^{2}$.

Answer: 1/30

F2: Integrate $f(x, y)=e^{\left(x^{3}\right)}$ over the region bounded by the x-axis, the line $x=1$, and the curve $y=x^{2}$.

Answer: $(e-1) / 3$

F3: Integrate $f(x, y)=(1+\sqrt{y}) \cdot \sin (y)$ over the region bounded by the x-axis, the line $x=1$, and the curve $y=x^{2}$.

