AMALYSES 2 16 April 2024

Warm-up: Calculate $f'_v(x, y)$ for $f(x, y) = xy^2 - x^{10} + y + e^{\sin x} + 3.$

Monday	Tuesday	Wednesday	
15 April	16 April	17 April	
	(today)	Problem Session	
22 April	23 April	24 April	
First Night of Passover	Exam 1	Lecture	
29 April	30 April	1 May	
	1/2 Lecture, 1/2 PS	Labour Day	

Thursday	Friday	Saturday	Sunday
18 April	19 April	20 April	21 April
25 April	26 April	27 April	28 April
2 May	3 May	4 May	5 May
	 Constitution Day 		

Example 1:
$$\int_{1}^{3} \int_{2}^{5} yx^{2} dx dy = \int_{1}^{3} (39)^{3} dx = \int_{1}^{3} \int_{2}^{5} yx^{2} dy dx = \int_{1}^{3} (-\frac{2}{3})^{3} dy dx = \int_{1}^{3} (-\frac{2}{3})^{3} dy dx = \int_{1}^{3} (-\frac{2}{3})^{3} dy dx = \int_{2}^{5} (-\frac{2}{3})^{3}$$

The "iterated integrals"

 $\int_{1}^{3} \int_{2}^{5} yx^{2} dx dy \text{ and } \int_{2}^{5} \int_{1}^{3} yx^{2} dy dx$ have the same value because they are both $\iint_R yx^2 dA$ for the same rectangle R.

y)dy = 156.

$\int x^2 dx = 91.$

$x^2)\mathrm{d}x = 156.$

the region D.

• Rectangle: $\int_{\text{left}}^{\text{right}} \int_{\text{bot. (number)}}^{\text{top (number)}} dy \, dx \text{ or } \int_{\text{bot. (left)}}^{\text{top (right)}} \int_{\text{left}}^{\text{right}} f \, dx \, dy$

Top and bottom are flat (or points):

The way we write an iterated integral for $\iint f dA$ depends on the shape of

In Analysis 1, both definite integrals $\int_{0}^{1} x^2 dx$ and indefinite integrals $\int x^2 dx$ are very common.

• F(b) - F(a) can be a meaningful physical quantity. • F(x) + C isn't actually that useful but itself, but doing indefinite integrals is good practice for definite integrals.

It's uncommon to see $\int f(x, y) dx$ or $\int f(x, y) dy$ as an indefinite integral task. This is because it doesn't answer a useful task by itself.

Antenderevaleves

Calculate $\int_{0}^{\pi} \int_{0}^{\infty} (2xy + 1) dy dx$. Calculate $\int_{x}^{x} (2xy + 1) dy$. Solution Calculate (2xy + 1)dy.

Does the answer to this task have a helpful science/engineering application?

(color is densily)

Does the answer to this task have a helpful science/engineering application? Calculate (2xy + 1)dydx. Calculate $\int_{x}^{x} (2xy + 1) dy$. Solution Calculate (2xy + 1)dy. Solution Describe all functions f(x, y) for which $f'_v = 2xy + 1$. Solution Describe all functions f(x, y) for which $\nabla f = \begin{bmatrix} y^2 - 3x^2 \\ 2xy + 1 \end{bmatrix}$.

These are the same task.

✓ Describe all functions f(x, y) for which $\nabla f = \begin{bmatrix} y^2 - 3x^2 \\ 2xy + 1 \end{bmatrix}$.

then vollage = f

3.0

2.5

2

Task: Describe all functions f(x, y) for which $\nabla f = \begin{vmatrix} y^2 - 3x^2 \\ 2xy + 1 \end{vmatrix}$. f(x,y) will have the format $(2xy+1)dy = xy^{2} + y + g(x)$ for some yel-unknown g(x), (not just $xy^2 + y + C$).

Warm-up: Calculate $f'_v(x, y)$ for $f(x, y) = xy^2 - x^{10} + y + e^{\sin x} + 3.$

Task: Describe all functions f(x, y) for which $\nabla f = \begin{vmatrix} y^2 - 3x^2 \\ 2xy + 1 \end{vmatrix}$. f(x,y) will have the format $(2xy+1)dy = xy^{2} + y + g(x)$ for some yel-unknown g(x). From the formula above, $f'_x = y^2 + 0 + g'(x)$. But from ∇f we also know $f'_{x} = y^{2} - 3x^{2}$.

So it must be that $g'(x) = -3x^2$. Thus $g(x) = -x^3 + C$, and

 $f(x,y) = xy^2 + y - x^3 + C.$

A: Integrate $f(x, y) = xy \cos(x^2)$ over the 3×12 (width \times height) rectangle with (0, 1) as its lower-left corner.

Answer: 42sin(9)

B: Integrate f(x, y) = y over the region bounded by $x = 0, x = 1, y = x^2$, and $y = x^2 + 1$.

Answer: 5/6

C: Integrate f(x, y) = 1 over the region bounded by y = x + 5, $y = \pi$, $y = -\pi$, and $x = \sin(y)$.

Answer: 10TT

D: Integrate f(x, y) = 1 over the region bounded by $y = 5 - x^2$, $y = (x+1)^2$.

Answer: 9

E: Integrate f(x, y) = 5x over the right half-disk of radius 1 centered at the origin.

Answer: 10/3

F1: Integrate $f(x, y) = x^3y^2$ over the region bounded by the *x*-axis, the line x = 1, and the curve $y = x^2$.

Answer: 1/30

F2: Integrate $f(x, y) = e^{(x^3)}$ over the region bounded by the *x*-axis, the line x = 1, and the curve $y = x^2$.

Answer: (e-1)/3

F3: Integrate $f(x, y) = (1 + \sqrt{y}) \cdot \sin(y)$ over the region bounded by the *x*-axis, the line x = 1, and the curve $y = x^2$.

Answer: 1-sin(1)

